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1 Introduction

With the rise of the internet and widespread digital services, the importance
of secure communication has never been greater. Thankfully, after 50 years
of Public Key cryptography [14], we have good theoretical tools to provide
this security.

Most of these systems rely on modular arithmetic with large numbers. For
example, RSA [31], or Elliptic Curve cryptography [24]. Working with
these numbers is not natively supported by hardware. Instead, we use a
“Big Number” software library to provide this functionality.

Unfortunately, although Public Key cryptosystems have been thoroughly
scrutinized in theory, implementations often suffer from vulnerabilities in
practice.

One important class of vulnerability are timing side-channels [18]. This is
when an implementation leaks information about secret values through its
execution time. Big Number libraries designed without cryptography in
mind suffer from these vulnerabilities.

In particular, Go [3] provides a general purpose Big Number type, big.Int,
which does not provide constant-time operations. Unfortunately, this li-
brary gets used for cryptography [12], including inside of Go’s own standard
library, in the go/crypto package.

We’ve addressed this issue by creating a library [22] providing Big Numbers
with constant-time operations. Our library provides the necessary opera-
tions for Public Key cryptography, while avoiding timing side-channels. To
demonstrate its utility, we’ve modified Go’s go/crypto package, replacing
the use of big.Int in the DSA and RSA systems, achieving a slowdown of
only 2x for the latter.

2 Background

In this section, we explain how Big Numbers are used in Public Key cryp-
tography, what timing side-channels are, how we model their threat, as well
as what kind of vulnerabilities are present in Go’s big.Int type.

2.1 Big Numbers in Cryptography

Most Public Key cryptosystems rely on modular arithmetic.

In RSA [31], a public key (𝑒 , 𝑁) consists of a modulus 𝑁 ∈ N, usually
2048 bits long, and an exponent 𝑒 ∈ [0, 𝜑(𝑁) − 1]. To encrypt a message
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𝑚 ∈ [0, 𝑁 − 1], we calculate

𝑐 := 𝑚𝑒 mod 𝑁

Since 𝑁 is much larger than a register, we need a Big Number library to
implement this system. Modular exponentiation is also not implemented
in hardware, requiring extra support in software.

DSA [32] also relies on modular arithmetic, this time using a large prime 𝑝
of around 2048 bits, and working in the multiplicative group (Z/𝑝Z)∗.
Elliptic Curve Cryptography [24] relies on complex formulas for adding
points on an elliptic curve, built over a finite field 𝐾. This field is usually
either a prime field Z/𝑝Z, in which case arithmetic modulo 𝑝 is used,
or a binary extension field GF(2𝑛), in which case binary and polynomial
arithmetic are used. For prime fields, Big Number functionality is necessary,
because the size of the prime is greater than 200 bits.

2.1.1 Implementing Big Numbers

When a modulus is known in advance, a special purpose library imple-
menting arithmetic with this fixed modulus can be used. This is the case
for Elliptic Curve cryptography, where the prime field is a fixed parameter
of the system. Using a fixed type makes it easier to provide constant-time
operation.

A disadvantage is that different systems require different moduli, so it takes
more work to implement and support each system. One way to address
this is to automatically generate implementations of modular arithmetic, as
done by FiatCrypto [15].

In some systems, you need support for dynamic moduli. Take RSA, for
example. In this case, you need a library that provides dynamically sized
numbers.

2.1.2 Big Numbers in go/crypto

Go provides implementations of the Public Key cryptosystems we’ve men-
tioned so far in its go/crypto package.

Unfortunately [12], the general purpose big.Int is used, in part, to im-
plement these systems, despite its potential vulnerability to timing at-
tacks.

For DSA [32], Go uses big.Int for all operations, including key generation,
signing, and verification.
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For RSA [31], Go embeds big.Int as part of the API for this package.
Key generation, encryption, decryption, signing, and verification all use
big.Int.

For ECC [24], Go defines a general interface for Elliptic Curves, requiring
operations like point addition, scalar multiplication, etc. All of these are
defined in terms of big.Int. Only P384 uses big.Int for field arithmetic di-
rectly. The other curves instead convert big.Int to an internal type for their
field elements, and perform their operations using that type instead. These
internal types vary a lot between these curves. P224 uses hand-written
operations in pure Go for its field, P256 uses an optimized implementa-
tion in assembly, and P521 uses field arithmetic generated by FiatCrypto
[15].

2.2 Timing Attacks

A side-channel [17] leaks secret information indirectly, through the observ-
able effects of a program’s execution. Timing side-channels use the execu-
tion time of a program to infer information about secret data it handles. A
timing attack is the use of a timing side-channel to break the security of
some program or cryptographic algorithm.

When a program takes a different number of steps based on the value of
some secret, this is an obvious timing side-channel. For example, a naive
algorithm for comparing inputs with a secret password might stop as soon
as a mismatch is found. This algorithm has an inherent timing side-channel.
This can be exploited, allowing the secret password to be guessed byte-by-
byte.

Not all timing side-channels are this simple. Algorithms that always take
the same number of steps can still having timing side-channels because of
the underlying hardware. For example, a processor may execute an oper-
ation faster for some inputs, or the presence of a cache could be used to
infer what addresses are being accessed. These microarchitectural timing
side-channels are also of concern. See [13] for a survey of these vulnerabil-
ities.

2.2.1 Actual Attacks

Although the presence of a side-channel does not directly lead to attacks,
Paul Kocher demonstrated the potential for timing side-channels to break
crypto-systems as early as 1995 [18, 19]. These attacks relied on algorithms
that perform a varying number of operations based on secret data.

One objection to timing attacks is that while a timing side-channel is catas-
trophic in theory, in practice this channel is too noisy to exploit. Unfor-
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tunately, it’s possible to exploit these attacks, even across a network [8, 7].
Noise only makes the channel more difficult to exploit, requiring more
samples to detect the underlying signal.

The use of caches as a potential side-channel was identified early on as well
[26]. Accessing data takes longer when that data is outside of the cache. If
data accesses depend on a secret value, the observed execution time will
also depend on this value. Additionally, an attacker located on the same
machine can place data into the cache and probe it themselves, learning
more precise information about the program’s access patterns. This kind of
colocation is increasingly common, as more applications are run on cloud
servers.

A wide variety of attacks involving caches have been mounted against
various cryptosystems [4, 34, 10] : accessing data based on secret values
should be avoided in cryptographic code.

2.2.2 Our Threat-Model

These side-channels can be distilled into a simple, albeit pessimistic, set of
rules:

1. Any loop leaks the number of iterations taken.

2. Any memory access leaks the address accessed.

(a) As a consequence, accessing an array leaks the index accessed.

3. Any conditional statement leaks which branch was taken.

Rule 1 is justified by theoretical concerns: a longer loop uses more oper-
ations. In practice, it’s difficult to observe the iterations of each loop in a
program from a global timing signal, making this a pessimistic rule.

Rule 2 is justified by various cache based side-channels and attacks [4, 34, 10].
Since caches only load information an entire line at a time, this rule may
seem too pessimistic. Perhaps only which cache line was accessed should
be kept secret [6]. Unfortunately, it’s possible to perform attacks on a much
finer level [5, 25, 34]. This is why we take a pessimistic position, and assume
that accesses leak their exact address.

Rule 3 is justified in two ways. First, if different branches of a conditional
statement execute a different number of operations, we can inherently ob-
serve which branch was taken. Second, even if both branches execute
identitical operations, the CPU’s branch predictor can be exploited to leak
information about which branch was taken [2, 1, 11].

In addition to these rules, we need a basic set of trusted operations to build
our programs. We assume that addition, multiplication, logical operations,

6



and shifts, as implemented in hardware, are constant-time in their inputs.
This is the case on most processors, one notable exception being micropro-
cessors [27]. This assumption is reasonable for the platforms targeted by
Go and our library.

2.3 Vulnerabilities in big.Int

Go provides a general purpose type for Big Numbers: big.Int. This type
focuses on being optimized, and useful in various situations. It does not
focus on protecting against timing side-channels. Unfortunately, out of
convenience, and for lack of better alternatives, it gets used in cryptography,
even inside of Go’s standard library.

In this section, we look at some of the important implementation aspects
of big.Int, and how they might be vulnerable according to our threat
model.

2.3.1 Padding

The big.Int type normalizes numbers internally, removing any leading
zero limbs. Even if you initialize a number using bytes zero-padded to a
certain length, the resulting value will immediately chop off these zeros.
By discarding them, operations on this number will have fewer limbs to
process, and will be faster.

Unfortunately, this means that big.Intpervasively leaks information about
the padding of numbers. Operations take more time when a number has
more limbs, thus leaking the padding of numbers. This has been exploited
in OpenSSL [23], and might potentially be a vulnerability in Go’s cryptog-
raphy library.

2.3.2 Leaky Algorithms

Because big.Int is not written with cryptography in mind, its operations
violate the rules in 2.2.2. Many methods take a different number of iter-
ations , branch conditionally, or access memory differently depending on
their values. Because big.Int is designed for general purpose use, this
problem should only get worse as the library is further developed and
optimized.

Ultimately, the problem is not the existence of big.Int, but its use in Go’s
cryptography library, and in the broader ecosystem.
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2.3.3 Mitigations

Although big.Int gets used in Go’s cryptography library, the authors are
aware of its shortcomings, and have implemented several mitigations to try
and make its timing side-channels harder to exploit.

One of the most important ones is a mitigation for RSA: blinding [19].

To decrypt a ciphertext 𝑐 = 𝑚𝑒 mod 𝑁 , we would normally calculate:

𝑐𝑑 mod 𝑁

with 𝑑 our private key, and (𝑒 , 𝑁) our public key. When exponentiation
is not implemented in a constant-time way, like with big.Int, this process
can leak information about 𝑚. If an adversary can choose 𝑐, then this can
leak information about 𝑑 as well.

To mitigate this, instead of decrypting 𝑐 directly, we first generate a random
integer 𝑟 ∈ (Z/𝑁Z)∗. Then, we decrypt 𝑟𝑒 · 𝑐. This gives us the value 𝑟 · 𝑚,
and we can recover 𝑚 by multiplying by 𝑟−1.

While this effectively mitigates the simplest attacks against exponentiation,
a very leaky operation, other methods are left unprotected, and may have
subtle exploits. For example, we there are fundamental issues with padding,
which has lead to attacks in OpenSSL [23].

3 Implementation

We’ve implemented a library, called safenum [22], intended to provide a
replacement for big.Int, suitable for cryptography. To test its utility, we’ve
replaced some of go/crypto’s usage of big.Int with our own library, in a
separate repository [21].

In this section, we go over the design and implementation of our library.

3.1 The safenum library

Safenum defines a Nat type, intended to replace big.Int. This type rep-
resents arbitrary numbers in N. Unlike big.Int, we do not handle nega-
tive numbers. Handling a sign bit in constant-time is exceedingly tricky.
Thankfully, we haven’t found this limitation to be restrictive when replacing
big.Int in Go’s cryptography library.

We represent numbers in base 𝑊 := 264. Concretely, we store a number as
a slice of type []uint, in little endian order. We call these the “limbs” of a
number. For example, the slice:
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[]uint{13, 47, 52}

represents the number:

52 · 2128 + 47 · 264 + 13

These limbs might be padded, to conceal the true value of a number, as
we’ll see later.

We provide operations for addition and multiplication of Nats. We also
provide numerous operations for modular arithmetic, including modular
addition, subtraction, multiplication, exponentiation, inversion, reduction,
and taking square roots modulo prime numbers. We also provide opera-
tions for serializing to and from bytes, as well as converting to and from
big.Int.

We try to structure the API in a similar way to big.Int, where an operation
is performed on a separate Nat receiving the result. For example, this is the
signature for modular addition:

func (z *Nat) ModAdd(x *Nat, y *Nat, m *Modulus) *Nat

This calculates 𝑧 ← 𝑥+𝑦 mod 𝑚, returning 𝑧. The advantage of structuring
the API this way, instead of simply returning a new value, is that we can
reuse the memory of 𝑧 for the result.

We go one step further, in fact, and use the memory of the receiving Nat for
all scratch space needed inside of an operation. Structuring our operations
this way limits memory waste.

3.1.1 Handling Size

A big.Int always stores a value using as few limbs as possible. Its true size,
the number of limbs necessary to store a value, always matches its announced
size, the number of limbs actually stored. When creating a big.Int, any
padding is immediately stripped away, to satisfy this invariant.

For Nat however, we allow values to be padded. This means that the
announced size of a number can be larger than its true size. Because the
announced size is what actually affects the runtime of our operations, we
can make sure that this size depends only on public information, allowing
us to keep the true size secret.

This means that every result we produce needs a clear announced size. For
modular operations, we have an obvious choice: the size of the modulus.
When doing a modular operation, the result will always receive the same
announced size as the modulus.

For example, when doing modular addition:
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func (z *Nat) ModAdd(x *Nat, y *Nat, m *Modulus) *Nat

our result z will have the same announced size as m. This implies that the
true size of z is at most that of m. After modular addition, we know that
𝑧 ∈ [0, 𝑚 − 1], so this fact about the true size of z does not reveal anything
new.

When serializing a Nat, we respect its announced size, and produce zeros
for padding as necessary. This is done without any special handling, since
extra zeros are already stored to match our announced size.

Similarly, when deserializing a Nat from bytes, we respect any padding,
unlike big.Int. For example, if 32 big endian bytes are deserialized, we
will end up with a Natwith an announced size of 256 bits, regardless of the
value of those bytes.

This leaves us with non-modular addition and multiplication of numbers.
One approach is to use whatever size necessary to store a maximal result.
For example, if we multiply numbers 𝑥1 and 𝑥2, of announced sizes 𝑏1 and
𝑏2, then our result will need a size of at most 𝑏1 + 𝑏2.

The disadvantage is that we use more and more space for each operation,
and we’re unable to shrink the announced size, even when we know that
our result would fit. Because of this, we opt towards letting users specify
exactly how many resulting bits they need in the output. For example,
multiplication has the following signature:

func (z *Nat) Mul(x *Nat, y *Nat, cap uint) *Nat

Here cap is the number of bits that the result should have. We use this to
determine the result’s announced length. Any output beyond that capacity
will simply be discarded.

In summary, the announced size of a Nat is always clear based on how it’s
produced. This size comes from deserializing a value, from matching the
size of a modulus, or from manually deciding on an output size.

3.1.2 Moduli

In our library, we use a different type for the moduli used in modular
arithmetic: Modulus. There are several reasons for doing this.

First, some modular operations use certain properties of the modulus which
can be pre-computed. For example, montgomery multiplication uses 𝑚−1

mod 𝑊 , with 𝑊 our base. Using a separate type for moduli lets us avoid
recomputing these properties, by storing them alongside the value of our
modulus.
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Second, we allow the true size of a modulus to be leaked. Moduli are
stored without padding. This is desirable because modular reduction needs
access to the most significant bits of a modulus, and fetching this infor-
mation without leaking padding is exceedingly difficult. Furthermore, by
storing moduli without padding, the announced size of numbers produced
through modular operations is as tight as possible, making every operation
faster.

This assumption is safe in cryptography. Moduli are often public, like with
the public modulus 𝑁 in RSA. Since the exact value is known, leaking the
true size is fine. There are other cases where a private modulus is necessary.
Even then, the true size of that modulus remains known. For example, when
generating an RSA key, we know the factorization 𝑁 = 𝑝𝑞 of the modulus,
and calculate our private key modulo 𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1):

𝑑 := 𝑒−1 mod 𝜑(𝑁)

Leaking the value of 𝜑(𝑁) would be catastrophic. On the other hand, it’s
clear that the true size of 𝜑(𝑁) is approximately that of 𝑁 , which is known.
In this case, leaking the true size of 𝜑(𝑁) is fine.

Finally, moduli are also allowed to leak whether or not they are even. The
motivation behind this is that certain modular operations have faster vari-
ants for odd moduli, or require different algorithms to support even moduli.
Rather than providing different methods for these different cases, we choose
to select the correct variant internally, allowing all modular operations to
work without exception. This requires checking whether or not a modulus
is odd or even, in order to dispatch the right operation, leaking this bit of
information in the process.

Fortunately, we’re not aware of any realistic situation where the evennness of
a modulus needs to be kept secret. In fact, for the cryptographic algorithms
we know of, the evenness of a modulus is known statically, making this
check fine. In RSA, for example, the modulus 𝑁 is odd by construction, and
𝜑(𝑁) is even as a consequence.

Since moduli are stored without padding, we require a separate type to not
violate Nat’s contract around size. Nat also has stronger constraints on in-
formation leakage, so providing a separate type helps to avoid accidentally
violating them.

3.2 Constant-Time Operations

The rules we established in our threat model 2.2.2 are quite stringent. For
most operations, we need to have conditional behavior depending on the
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values we process. Without access to branching, this seems difficult. Thank-
fully, we can emulate branching without leaking information. The idea is
simple: to choose between two branches, we perform both, and then com-
bine the results together, without revealing which result is produced.

For example, a standard algorithm for modular subtraction would look like
this (in pseudo-Go):

func (z *Nat) ModSub(x *Nat, y *Nat, m *Modulus) *Nat {
borrow := z.Sub(x, y)
if borrow == 1 {
z.Add(z, m)

}
}

The problem is that by conditionally adding in 𝑚, we reveal whether or not
𝑦 > 𝑥, and a borrow occurred. Our solution uses a new primitive:

func (z *Nat) ctCondCopy(v choice, y *Nat) *Nat

This function assigns y to z if v == 1, and does nothing otherwise. Further-
more, this primitive should leak no information about the condition.

With this in place, we can implement modular subtraction without leak-
age:

func (z *Nat) ModSub(x *Nat, y *Nat, m *Modulus) *Nat {
borrow := z.Sub(x, y)
scratch := new(Nat).Add(z, m)
z.ctCondCopy(choice(borrow), scratch)

}

We always perform the addition, and copy over the result if necessary,
without leaking the value of borrow.

This pattern is what allows us to replace branching with constant-time
operations throughout our algorithms.

3.2.1 Building Primitives

How do you make primitives like ctCondCopy, which let you choose results
without leaking which choice was made?

The methods for constant-time choice are analogous to those used for
variable-time choice. Instead of using bool to represent the result of a
condition, we use

type choice Word
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The value of a choice is either 1 or 0, but we use the same type as full limbs,
to avoid having the compiler re-insert branches into our code.

From this choice value, we can build a primitive that selects between two
limbs, without leaking which choice was selected:

func ctIfElse(v choice, x, y Word) Word {
mask := -Word(v)
return y ^ (mask & (y ^ x))

}

This routine returns x if v == 1, and y otherwise. The bitwise opera-
tions don’t leak information about our choice, unlike a conditional state-
ment.

If v == 0, then mask contains only zeros, and we’re left with y. When v ==
1, then mask only contains ones. The ys cancel each other out, leaving us
with x.

We can use this primitive to build up a larger selection primitive, allowing
us to conditionally assign an entire slice of limbs to another:

func ctCondCopy(v choice, x, y []Word) {
for i := 0; i < len(x); i++ {
x[i] = ctIfElse(v, y[i], x[i])

}
}

These primitives allow us to use choice to introduce conditional behavior
without leaking our choices, but we also need a way to create choice values.
These are built up in a similar way, from small functions to larger ones.

We can decide whether or not two limbs are equal using some bitwise
trickery:

func ctEq(x, y Word) choice {
q := uint64(x ^ y)
return 1 ^ choice((q|-q)>>63)

}

To understand why this trick works, first realize that in two’s complement,
if you take any number 𝑥 ≠ 0, then the most significant bit of either 𝑥 or −𝑥
is set. For 0, neither are set. We can check that q is non-zero by seeing if
either bit is set:

choice((q|-q)>>63)

Since q is zero precisely when x and y are equal, we negate this non-zero
check.
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We can use this primitive to compare entire slices of limbs in constant
time:

func cmpEq(x []Word, y []Word) choice {
res := choice(1)
for i := 0; i < len(x) && i < len(y); i++ {
res &= ctEq(x[i], y[i])

}
return res

}

Two slices are equal when each of their limbs match. Since we can’t exit
early without leaking information about x and y, we implement this formula
using bitwise operators, without any short-circuiting.

3.3 Algorithm Choices

While going over how each operation works in detail is outside the scope
of this report, describing some the high-level techniques used for these
operations is still valuable.

Many of these operations were inspired by the excellent work of Thomas
Pornin in BearSSL [28].

3.3.1 Modular Reduction

To reduce a number modulo𝑚, we first implement an operation that allows
us to shift in a single limb. This lets us reduce a number of the form:

𝑧 := 𝑎 ·𝑊 + 𝑏
with 𝑎 ∈ [0, 𝑚 − 1] and 𝑏 ∈ [0,𝑊 − 1]. We can use this operation to reduce
an arbitrary 𝑥. First, we can write out 𝑥 in base𝑊 :

𝑥 = 𝑥𝑛𝑊𝑛 + 𝑥𝑛−1𝑊𝑛−1 + · · · + 𝑥0

Then, we can rewrite this expression to see how shifting plays a role:

𝑥 = ((𝑥𝑛𝑊 + 𝑥𝑛−1)𝑊 + · · · )𝑊 + 𝑥0

Having written 𝑥 in this form, it becomes clear that to reduce 𝑥 modulo
𝑚, we can use our shifting primitive, folding in the limbs of 𝑥 from most
significant to least significant.

Implementing the shifting operation needs the quotient 𝑞 := ⌊𝑧/𝑚⌋, in
order to calculate the remainder 𝑧 − 𝑞𝑚. Instead of calculating 𝑞 directly,
we instead produce an estimate �̂�, by using the most significant 64 bits of
𝑚 to divide 128 corresponding bits of 𝑧. This estimate satisfies �̂� = 𝑞 ± 1,
so we then conditionally add and subtract 𝑚 to correct for this error. This
technique is further described in [28].
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3.3.2 Inversion

For modular inversion, which method we use depends on whether our
modulus is odd or even. As mentioned previously, we’re allowed to choose
the right method dynamically.

For odd moduli, we use the binary GCD algorithm, as described in [29].
We have yet to implement the most optimized version, which accumulates
intermediate results into single limb registers. Instead, we perform full
width operations at each iteration.

For an even modulus 𝑚, there’s a standard trick to calculate 𝑥−1 mod 𝑚.
First, we calculate 𝑢 := 𝑚−1 mod 𝑥, using our method for odd moduli, and
then we calculate our desired inverse as:

𝑢𝑚 − 1
𝑥

This requires implementing a division operation that works with padded
numbers. We can’t reuse the limb-by-limb modular reduction routine we
normally use, and instead adapt a bit-by-bit reduction routine, as described
in [28].

3.3.3 Exponentiation

For exponentiation, we use left-to-right exponentiation, with a window
size of 4 bits. To perform window lookups, we use a constant-time condi-
tional assignment over each of the possible window values. Even though
this requires traversing the entire window table at every iteration, we’ve
found that this method is still faster than using a smaller window size of 2
bits.

3.3.4 Multiplication

For modular multiplication, we calculate the full product 𝑎𝑏, and then re-
duce this result modulo𝑚. This works for both odd and even moduli.

In the case of odd moduli, using Montgomery multiplication [16, 28] is
faster, but requires converting inputs into their Montgomery representation,
producing outputs in this representation. For exponentiation, the cost of
converting to and from this representation is amortized, since we do many
multiplications between conversions, making it considerably faster to use
this technique. Unfortunately, Montgomery multiplication doesn’t work for
even moduli, so exponentiation is slower in that case.
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3.3.5 Modular Square Roots

To calculate
√
𝑧 mod 𝑝, we assume that 𝑝 is prime. Calculating square

roots with a composite modulus is, in general, as hard as factoring it [9],
which is why we only support prime moduli. Which algorithm we use
depends on whether 𝑝 = 3 mod 4, or 𝑝 = 1 mod 4.

In the first case, we can calculate a root as:
√
𝑧 = 𝑧(𝑝+1)/4 mod 𝑝

In the second case, we use a constant-time variant of the Tonnelli-Shanks
algorithm, as described in [33].

3.4 Implementation Choices

In this section, we describe a few more details about how numbers are
stored, and the motivation behind these choices.

3.4.1 Saturated or Unsatured Limbs

We store numbers in base 𝑊 := 264. This means that we use the full width
of a register to store each limb. Because of this, we say that are limbs are
saturated. It’s also possible to store limbs unsaturated, by using fewer than
64 bits. BearSSL [28] takes this approach, using only 31 bits of the available
32 bits in the integers it uses. For 64 bit registers, using 63 bit unsaturated
limbs would be the analogous choice.

There are two compelling reasons for using unsaturated limbs.

First, this leaves an extra bit of space to hold a carry or borrow after an ad-
dition or subtraction. This allows us to chain together carries to implement
operations over multiple limbs, without having to use assembly instruc-
tions. In Go, this isn’t a concern, since bits.Add and bits.Sub can be used
to implement these intrinsics in a cross-platform way.

Second, if we use 𝑤 bits for each limb, then montgomery multiplication
needs to work with a value of size 2𝑤 + 1 bits. With a fully saturated
limb of 64 bits, we need 129 bits. This uses an extra register compared to
unsaturated limbs of 63 bits. Because montgomery multiplication is called
very often during exponentiation, this can yield considerable savings.

One disadvantage of using unsaturated limbs comes when converting num-
bers to and from bytes. With fully saturated limbs, our 64 bit limbs are
composed of exactly 8 bytes. With 63 bit limbs, this isn’t the case, making
conversion more complicated and expensive.
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Using unsaturated limbs would also require storing additional information
about the exact announced size of a number, instead of being able to use
the number of limbs directly, as we do now.

Finally, by using saturated limbs, we can use the assembly routines already
implemented for low level operations in big.Int, which uses saturated
limbs. These low-level routines are constant-time, and speed up basic
operations.

Interoperability with these routines is ultimately the main reason why we
opted for using saturated limbs.

3.4.2 Redundant Reductions

Our library tries to prevent misuse. Because of this, modular operations
work even if their inputs are not already reduced. For example, addition
modulo 𝑚 should return the right result, even if the inputs are greater than
𝑚. Unfortunately, the cost of reducing inputs modulo 𝑚 when they are
already in range is not desirable, since this operation is relatively expensive.
Ideally, we’d like to avoid reducing inputs when we know this reduction is
redundant.

To implement this, each Nat stores a pointer to a modulus, indicating that it
has been reduced by this modulus. When we reduce a number modulo 𝑚,
we check this pointer, and skip the reduction if it matches 𝑚. If we modify
the value of a number, we update the modulus it points to accordingly. For
example:

z.ModAdd(x, y, m)

will set z’s modulus to m, and calling:

z.SetBytes(data)

will clear z’s modulus, making it nil.

We modify this pointer based strictly on what methods are called, never
on the actual value of a result. Thus, the dynamic checks of this pointer
only depend on the call-graph of our program. Since this graph is statically
determined, these redundant reduction checks don’t impact the constant-
time properties of our library.

4 Results

We’ve compared the performance of our library with big.Int, operation
by operation, as well as in the context of the go/crypto package. Overall,
our library is about 2.6x slower than using big.Int for most operations,
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but only 2x slower in realistic situations. In this section, we present these
results in detail.

4.1 Comparison with big.Int

We’ve set up a series of benchmarks to compare the performance of Nat
compared to big.Int on various operations.

The following operations are all implemented on values, exponents, and
(odd) moduli of 2048 bits. For raw addition and multiplication, we use the
full size necessary to represent the result in our benchmarks.

Operation op / s (big.Int) op / s (Nat) ratio
Addition 10,980,842 12,164,599 0.90

Modular Addition 6,986,739 3,075,188 2.27
Multiplication 1,316,322 542,385 2.43

Modular Reduction 454,917 63,253 7.19
Modular Multiplication 1,000,000 44,596 22.42

Modular Inversion 1,000,000 621 1610
Modular Exponentiation 223 86 2.59

The most expensive operation, by far, is exponentiation. Because of this,
it’s fair to compare the performance on these two types mainly on this
operation. We can see that Nat is 2.6x slower compared to big.Int for
exponentiation, although some operations are much slower.

For comparing modular square roots, we used the primes 𝑝3 = 2244 + 79,
which is 3 mod 4, and 𝑝1 = 2244 + 153 which is 1 mod 4. We use different
primes to test the various codepaths for modular square roots:

Operation op / s (big.Int) op / s (Nat) ratio
√
𝑧 mod 𝑝3 40,464 26,886 1.50√
𝑧 mod 𝑝1 - 7,867 -

We couldn’t find a large value where Go’s Tonneli Shanks routine managed
to find a square root without hanging, although we expect the ratio to be
similar to the other case.

4.2 Comparison with go/crypto

We’ve created a forked package [21] of go/crypto, where we’ve replaced
big.Int with our own Nat type for both RSA and DSA. All of the code
using big.Int has been replaced, with the exception of primality check-
ing. This demonstrates the utility of our package for writing cryptographic
code.
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We’ve also run benchmarks to assess the performance impact, as we show
in the following table:

Operation op / s (big.Int) op / s (Nat) ratio
RSA Decrypt 670 312 2.15

RSA Sign 675 372 1.81
RSA Decrypt (3 Prime) 1173 596 1.97

DSA Sign 6202 2625 2.36
DSA Parameters 0.89 1.64 0.54

We use a 2048 bit modulus for both RSA and DSA. For RSA, we use the CRT
optimization, instead of using exponentiation directly. Our benchmarks
for big.Int use blinding, but our benchmarks for Nat do not. Because
Nat is constant-time, we don’t need to use blinding to mitigate timing at-
tacks. We don’t include DSA verification, since this can be safely done with
big.Int.

Overall, we can see that in a real world scenario, the use of Nat is only
2x slower. This can surely be improved, but is already an encouraging
result.

5 Further Work

While we’re happy with the utility of our library, and the performance
results we’ve managed to achieve, it’s of course still possible to improve on
this front.

5.1 Verifying Constant-Time Properties

Ultimately, we would like to have more assurance about the constant-time
properties of our library. Our code hasn’t undergone an audit, nor have we
verified the assembly output produced by the Go compiler to ensure that it
meets our demands.

Ideally, it would be nice to incorporate some kind of automated analysis
of our code to detect timing side-channels. An approach similar to dudect
[30] might be an interesting way to provide a form of fuzz testing to detect
unwanted time-variation.

5.2 Optimizing Assembly Routines

Currently, we rely on some assembly routines pulled from big.Int, slightly
modified to avoid jumping to variable-time routines. Unfortunately, not all
of the primitive operations we would like to have are present. Furthermore,
we could reduce memory usage in some places, by having these operations
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present a "conditional" variant. For example, we could have an add opera-
tion taking a choice flag, allowing us to choose whether or not to perform
an addition, without leaking information. This would avoid having to use
a scratch buffer and a conditional copy.

To gain similar speed to the other primitives, these new primitives would
also need to be implemented in assembly. This would be time-consuming,
but likely worth the effort. There are also new solutions to help with writing
assembly routines in Go, such as the Avo library [20].

5.3 Upstreaming to go/crypto

While we hope our library is immediately useful for the broader ecosystem,
it’s not realistically going to be replacing big.Int in Go’s cryptography
library any time soon.

The most likely path towards removing big.Int from go/crypto is to move
towards specialized arithmetic implementations for each prime field in-
volved in ECC. DSA is a legacy algorithm, where the security flaws intro-
duced by big.Int are not of major concern.

This leaves RSA. Unfortunately, because RSA requires dynamic moduli, we
need a Big Number library of some kind. Ideally, this library would be
internal to RSA, allowing constant-time operation, and severing the bridge
between Go’s cryptography package, and big.Int.

We’ve submitted a patch 1 for Go’s implementation of RSA, replacing
big.Int with an internal number type, using the minimal amount of code
necessary to implement encryption and decryption. The public API, as well
as key generation, still use big.Int.

Using unsaturated limbs, we’ve found that our version of RSA suffers only a
1.7x slowdown, while implementing encryption and decryption in constant-
time.

6 Conclusion

In summary, we have shown why Go’s general purpose big number type,
big.Int, is not suitable for Cryptography. Unfortunately, this type gets
used out of convenience, and for lack of better alternatives, even in Go’s
own cryptography library.

To address this, we’ve created a replacement library for big.Int, achieving
a slowdown of only 2.6x for most operations, while attempting to provide
constant-time operation.

1https://go-review.googlesource.com/c/go/+/326012
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To test the utility of this library, we’ve replaced the usage of big.Int in Go’s
implementation of RSA, and DSA, and found only a slowdown of 2x.
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